• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

    (ندگان)پدیدآور
    Abedini, M.Ziaii, M.Negahdarzadeh, Y.Ghiasi-Freez, J.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.534 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Case Study
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types of 682 pores were used for training two intelligent models, BPN (back-propagation network) and SAE (stacked autoencoder). The trained models take the geometrical properties of pores to classify the type of six porosity types including intra-particle, inter-particle, vuggy, moldic, biomoldic, and fracture. The MSE values for the BPN and SAE models were found to be 0.0042 and 0.0038, respectively. The precision, recall, and accuracy of the intelligent models for classifying the types of pores were calculated. The BPN model was able to correctly recognize 193 intra-particle pores out of 197 ones, 45 inter-particle pores out of 50 ones, 7 vuggy pores out of 9 ones, 10 moldic pores out of 12 ones, 2 biomoldic pores out of 3 ones, and 6 fractures out of 7 ones. Also the SAE model was able to correctly classify 193 intra-particle pores out of 197 ones, 46 inter-particle pores out of 50 ones, 8 vuggy pores out of 9 ones, 10 moldic pores out of 12 ones, 3 biomoldic pores out of 3 ones, and 7 fractures out of 7 ones. The results obtained showed that the SAE model carried out a bit more accuracy for classification of the inter-particle, vuggy, biomoldic, and fracture pores.
    کلید واژگان
    porosity classification
    image analysis
    Neural network
    deep learning
    stacked autoencoder

    شماره نشریه
    2
    تاریخ نشر
    2018-04-01
    1397-01-12
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Iranian Central Oil Fields Company (ICOFC), Subsidiary of National Iranian Oil Company (NIOC), Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2018.6386.1458
    http://jme.shahroodut.ac.ir/article_1120.html
    https://iranjournals.nlai.ir/handle/123456789/242844

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب