• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting Unconfined Compressive Strength of Intact Rock Using New Hybrid Intelligent Models

    (ندگان)پدیدآور
    Rezaei, M.Asadizadeh, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    3.151 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especially during the drilling operation in cracked, fractured, and weak rocks. Therefore, some attempts have recently been made to develop the indirect methods, i.e. intelligent predictive models for rock UCS estimation, which require no core preparation and laboratory equipment. This work focuses on the application of new combinations of intelligent techniques including adoptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA), and particle swarm optimization (PSO) in order to predict rock UCS. These models were constructed based on the collected laboratory datasets upon 93 core specimens ranging from weak to very strong rock types. The proposed hybrid model results were compared with each other, and the real data and multiple regression (MR) results. These comparisons were made using coefficient of correlation, mean of square error, mean of absolute error, and variance account for indices. The comparison results proved that the ANFIS-GA combination had a relatively higher accuracy than the ANFIS-PSO combination, and both had a higher capability than the MR model. Furthermore, the ANFIS-GA and ANFIS-PSO model results were completely in accordance with the UCS laboratory test, and they were more accurate than the previous single/hybrid intelligent models. Lastly, a parametric study of the suggested models showed that the density and Schmidt hammer rebound had the highest influence, and porosity had the lowest influence on the output (UCS).
    کلید واژگان
    Intact rock
    Unconfined compressive strength
    Adaptive Neuro-Fuzzy Inference System
    Genetic Algorithm
    Particle Swarm Optimization
    Rock Mechanics

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
    Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2019.8839.1774
    http://jme.shahroodut.ac.ir/article_1573.html
    https://iranjournals.nlai.ir/handle/123456789/242780

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب