• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian Data Fusion: a Reliable Approach for Descriptive Modeling of Ore Deposits

    (ندگان)پدیدآور
    Tokhmechi, B.Ebrahimi, S.Azizi, H.Ghavami-Riabi, Seyed R.Farrokhi, N.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    5.497 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Recognition of ore deposit genesis is still a controversial challenge for economic geologists. Here, this task was addressed by the virtue of Bayesian data fusion (BDF) implementing available proofs: semi-schematic examples with two (Cu and Pb + Zn) and three (Cu, Pb + Zn and Ag) evidences. The data, in current paper are just concentrations of indicated elements, were collected from Angouran's deposit in Iran at prospecting and general exploration stages. BDF was used for discrimination between three geneses of Massive Sulfide, Mississippi and SEDEX types. Better genesis recognition with clear discrimination between the geneses was achieved by BDF as compared with earlier studies. The results showed that uncertainties were reduced from 50% to less than 30% and deposit recognition was improved greatly. Furthermore, we believe that using more properties can have a beneficial effect on the overall outcome. The comparison made between 2 and 3 properties showed that the amount of probable belonging values to any type of deposit was greater in 3 properties. It was also confirmed that using the completed information from the various stages of exploration progress can be amplified and be used for genesis recognition via BDF.
    کلید واژگان
    Data Assimilation
    Complexity
    Decision Making
    Economic Geology
    Uncertainty Reduction
    Exploitation

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Mining, Petroleum & Geophysics Engineering, Center of Excellency in Mining Engineering, Shahrood University of Technology, Shahrood, Iran.
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, North Dakota, USA.
    Faculty of Mining, Petroleum & Geophysics Engineering, Center of Excellency in Mining Engineering, Shahrood University of Technology, Shahrood, Iran.
    Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2019.7980.1667
    http://jme.shahroodut.ac.ir/article_1449.html
    https://iranjournals.nlai.ir/handle/123456789/242770

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب