نمایش مختصر رکورد

dc.contributor.authorMahvash Mohammadi, N.en_US
dc.contributor.authorHezarkhani, A.en_US
dc.date.accessioned1399-07-09T03:32:22Zfa_IR
dc.date.accessioned2020-09-30T03:32:22Z
dc.date.available1399-07-09T03:32:22Zfa_IR
dc.date.available2020-09-30T03:32:22Z
dc.date.issued2020-01-01en_US
dc.date.issued1398-10-11fa_IR
dc.date.submitted2019-01-12en_US
dc.date.submitted1397-10-22fa_IR
dc.identifier.citationMahvash Mohammadi, N., Hezarkhani, A.. (2020). A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data. Journal of Mining and Environment, 11(1), 49-61. doi: 10.22044/jme.2019.7956.1664en_US
dc.identifier.issn2251-8592
dc.identifier.issn2251-8606
dc.identifier.urihttps://dx.doi.org/10.22044/jme.2019.7956.1664
dc.identifier.urihttp://jme.shahroodut.ac.ir/article_1513.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/242769
dc.description.abstractIdentification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for alteration classification by applying two new methods of machine learning, including Random Forest and Support Vector Machine. The 14 band ASTER and 19 derivative data layers extracted from ASTER including band ratio and PC imagery, are used as training datasets for improving the results. Comparison of analytical results achieved from the two mentioned methods confirmed that the SVM model has sufficient accuracy and more powerful performance than RF model for alteration classification in the study area.en_US
dc.format.extent5238
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of Mining and Environmenten_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jme.2019.7956.1664
dc.subjectClassificationen_US
dc.subjectMachine learningen_US
dc.subjectRandom Foresten_US
dc.subjectSupport Vector Machineen_US
dc.subjectPorphyry copperen_US
dc.subjectExplorationen_US
dc.titleA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Dataen_US
dc.typeTexten_US
dc.typeOriginal Research Paperen_US
dc.contributor.departmentDepartment of Mining and Metallurgy Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.en_US
dc.contributor.departmentDepartment of Mining and Metallurgy Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.en_US
dc.citation.volume11
dc.citation.issue1
dc.citation.spage49
dc.citation.epage61


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد