• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data

    (ندگان)پدیدآور
    Mahvash Mohammadi, N.Hezarkhani, A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    5.115 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for alteration classification by applying two new methods of machine learning, including Random Forest and Support Vector Machine. The 14 band ASTER and 19 derivative data layers extracted from ASTER including band ratio and PC imagery, are used as training datasets for improving the results. Comparison of analytical results achieved from the two mentioned methods confirmed that the SVM model has sufficient accuracy and more powerful performance than RF model for alteration classification in the study area.
    کلید واژگان
    Classification
    Machine learning
    Random Forest
    Support Vector Machine
    Porphyry copper
    Exploration

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Mining and Metallurgy Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
    Department of Mining and Metallurgy Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2019.7956.1664
    http://jme.shahroodut.ac.ir/article_1513.html
    https://iranjournals.nlai.ir/handle/123456789/242769

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب