• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of ultimate strength of shale using artificial neural network

    (ندگان)پدیدآور
    Moshrefi, S.Shahriar, K.Ramezanzadeh, A.Goshtasbi, K.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.492 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Case Study
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimate strength of shale, and comparison was made with support vector machine (SVM), multiple linear regression models, and the widely used conventional polyaxial failure criteria in the stability analysis of rock structures, Drucker-Prager, and Mogi-Coulomb. For building the model, the corresponding results of triaxial and polyaxial tests have been performed on shales by various researchers. They were collected from reliable published articles. The results obtained showed that a feed forward back propagation multi-layer perceptron (MLP) was used and trained using the Levenberg–Marquardt algorithm, and the 2-4-1 architecture with root-mean-square-error (RMSE) of 24.41 exhibits a better performance in predicting the ultimate strength of shale in comparison with the investigated models. Also for further validation, triaxial tests were performed on the deep shale specimens. They were prepared from the Ramshire oilfield in SW Iran. The results obtained were compared with ANN, SVM, multiple linear regression models, and the conventional failure criterion prediction. They showed that the ANN model predicted ultimate strength with a minimum error and RMSE being equal to 43.81. Then the model was used for prediction of the threshold broken pressure shale layer in the Gachsaran oilfield in Iran. For this, a vertical and horizontal stress was calculated based on a depth of shale layer. The threshold broken pressure was calculated for the beginning and ending of a shale layer to be 154.21 and 167.98 Mpa, respectively.
    کلید واژگان
    Neural network
    failure criterion
    shale
    ultimate strength
    Support Vector Machine
    Rock Mechanics

    شماره نشریه
    1
    تاریخ نشر
    2018-01-01
    1396-10-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
    Mining and Metallurgical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Department of Mining Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, Tehran, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2017.5790.1390
    http://jme.shahroodut.ac.ir/article_1012.html
    https://iranjournals.nlai.ir/handle/123456789/242732

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب