• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 4, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 4, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods

    (ندگان)پدیدآور
    Gholamnejad, JavadBahaaddini, HamidRezaRastegar, Morteza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    557.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Case Study
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification systems. This paper presents the results of a study into the application of Artificial Neural Networks (ANN) technique and Regression models for estimation of the deformation modulus of rock masses. A database, including 225 actual measured deformation modulus, Uniaxial Compressive Strengths of the rock (UCS), and Rock Mass Rating (RMR) was established. Data collected from different projects. For predicting Em by regression, a nonlinear regression method was chosen. This model showed the coefficient correlation of 0.751 and mean absolute percentage error (MAPE) of 9.911%. Also a three-layer ANN was found to be optimum, with an architecture of two neurons in the input layer, four neurons in the hidden layer and one neuron in the output layer. The correlation coefficient determined for deformation modulus predicted by the ANN was 0.786 and the quantity of MAPE was 6.324%. With respect to the results obtained from two models, the ANN technique was shown to be better than the regression model because of its higher accuracy.
    کلید واژگان
    Rock mass modulus
    neural networks
    Regression method
    Discontinuity

    شماره نشریه
    1
    تاریخ نشر
    2013-01-01
    1391-10-12
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of mining and metallurgical engineering
    M.Sc. student, Department of Mining and Metallurgical engineering, Yazd University, Yazd, Iran
    M.Sc. student, Department of Mining and Metallurgical engineering, Yazd University, Yazd, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2013.144
    http://jme.shahroodut.ac.ir/article_144.html
    https://iranjournals.nlai.ir/handle/123456789/242681

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب