On nilpotent interval matrices
(ندگان)پدیدآور
Golpar raboky, EffatEftekhari, Tahereh
نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
In this paper, we give a necessary and sufficient condition for the powers of an interval matrix to be nilpotent. We show an interval matrix $it{bf{A}}$ is nilpotent if and only if $ rho(mathscr{B})=0 $, where $mathop{mathscr{B}} $ is a point matrix, introduced by Mayer (Linear Algebra Appl. 58 (1984) 201-216), constructed by the $ (*) $ property. We observed that the spectral radius, determinant, and trace of a nilpotent interval matrix equal zero but in general its converse is not true. Some properties of nonnegative nilpotent interval matrices are derived. We also show that an irreducible interval matrix $bf{A}$ is nilpotent if and only if $ | bf{A} | $ is nilpotent.
کلید واژگان
Interval matrixnilpotent matrix
spectral radius
شماره نشریه
2تاریخ نشر
2019-06-011398-03-11
ناشر
University of Guilanسازمان پدید آورنده
Faculty of Mathematical Sciences, University of Qom, Qom, IranSchool of Mathematics, Iran University of Science & Technology, Tehran , Iran
شاپا
2345-394X2382-9869



