• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Engineering and Technology
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Engineering and Technology
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

    (ندگان)پدیدآور
    Ashrafidoost, RezaSetayeshi, SaeedSharifi, Arash
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    489.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance. This approach analyzes and tracks the emotional state changes trend of speaker during the speech. The proposed method classifies utterance emotions in six standard classes including, boredom, fear, anger, neutral, disgust and sadness. For this purpose, it is applied the renowned speech corpus database, EmoDB, for training phase of the proposed approach. In this process, once the pre-processing tasks are done, the meaningful speech patterns and attributes are extracted by MFCC method, and meticulously selected by SFS method. Then, a statistical classification approach is called and altered to employ as a part of the method. This approach is entitled as the LGMM, which is used to categorize obtained features. Aftermath, with the help of the classification results, it is illustrated the emotional states changes trend to reveal speaker feelings. The proposed model also has been compared with some recent models of emotional speech classification, in which have been used similar methods and materials. Experimental results show an admissible overall recognition rate and stability in classifying the uttered speech in six emotional states, and also the proposed algorithm outperforms the other similar models in classification accuracy rates.
    کلید واژگان
    speech processing
    emotional states
    Pattern Recognition
    mel frequency cepstral coefficient
    Gaussian mixture model
    Image, Speech and Signal Processing

    شماره نشریه
    2
    تاریخ نشر
    2017-05-01
    1396-02-11
    ناشر
    Science and Research Branch,Islamic Azad University
    سازمان پدید آورنده
    Department of Computer Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
    Amirkabir University of Technology, Tehran, Iran
    Department of Computer Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

    شاپا
    2423-4192
    2423-4206
    URI
    http://jacet.srbiau.ac.ir/article_10302.html
    https://iranjournals.nlai.ir/handle/123456789/21321

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب