• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Engineering and Technology
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Engineering and Technology
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementation of Random Forest Algorithm in Order to Use Big Data to Improve Real-Time Traffic Monitoring and Safety

    (ندگان)پدیدآور
    Fatholahzade, NeginAkbarizadeh, GholamrezaRomoozi, Morteza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    882.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance efficiency and traffic safety are considered as an im-portant element in measuring the performance of the system. Although the productivity can be evaluated in terms of traffic congestion, safety can be obtained through analysis of incidents. Exposure effects have been done to identify the Factors and solutions of traffic congestion and accidents.In this study, the goal is reducing traffic congestion and im-proving the safety with reduced risk of accident in freeways to improve the utilization of the system. Suggested method Man-ages and controls traffic with use of prediction the accidents and congestion traffic in freeways. In fact, the design of the real-time monitoring system accomplished using Big Data on the traffic flow and classified using the algorithm of random-ized forest and analysis of Big Data Defined needs. Output category is extracted with attention to the specified characteristics that is considered necessary and then by Alarms and signboards are announced which are located in different parts of the freeways and roads. All of these processes are evaluated by the Colored Petri Nets using the Cpn Tools tool.
    کلید واژگان
    ITS
    DMS
    Big Data
    Colored petri net
    Random forest
    Clustering and Classification

    شماره نشریه
    2
    تاریخ نشر
    2018-05-01
    1397-02-11
    ناشر
    Science and Research Branch,Islamic Azad University
    سازمان پدید آورنده
    Computer Department, Faculty of Engineering, Islamic Azad University E-Campus, Tehran, Iran
    Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
    Department of Computer Engineering, kashan Branch, Islamic Azad University, Kashan, IRAN

    شاپا
    2423-4192
    2423-4206
    URI
    http://jacet.srbiau.ac.ir/article_11846.html
    https://iranjournals.nlai.ir/handle/123456789/21304

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب