• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 6, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 6, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

    (ندگان)پدیدآور
    Akbarzadeh, A.Vesali Naseh, M. R.NodeFarahani, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    855.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily CO concentration as a function of 12 input variables. Then, forward selection (FS) technique was applied to reduce the number of input variables. After converting 12 input variables to 7 using the FS, they were fed to SVM models (FS-(-SVM) and FS-(-SVM)). Finally, a comparison among SVM models operation and previously developed techniques, i.e. classical regression model and artificial intelligent methods such as ANN and adaptive neuro-fuzzy inference system (ANFIS) was carried out. Determination of coefficient (R2) and mean absolute error (MAE) for -SVM (-SVM) were 0.87 (0.40) and 0.87 (0.41), respectively, while they were 0.90 (0.39) and 0.91 (0.35) for ANN and ANFIS, respectively. Results of developed SVM models indicated that both FS-(-SVM) and FS-(-SVM) regression techniques were superior. Furthermore, it was founded that the performance of FS-(-SVM) and FS-(-SVM) models were generally a bit better than the best FS-ANFIS and FS-ANN solutions for short term forecasting of CO concentrations.
    کلید واژگان
    Air pollution
    forward selection
    carbon monoxide
    artificial intelligent
    Tehran

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Water Research Institute, Ministry of Energy, P.O. Box 16765-313, Tehran, Iran The Institute for Energy and Hydro Technology, P.O. Box 14845-131Tehran, Iran
    Department of Civil Engineering, Arak University, P.O. Box 38156-879, Arak, Iran
    Department of Civil Engineering, Azad University South Tehran Branch, P.O. Box 15847-43311, Tehran, Iran

    شاپا
    2383-451X
    2383-4501
    URI
    https://dx.doi.org/10.22059/poll.2019.279412.618
    https://jpoll.ut.ac.ir/article_73985.html
    https://iranjournals.nlai.ir/handle/123456789/207287

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب