• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 7, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 7, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Electrofacies Based on Flow Units Using NMR Data and SVM Method: a Case Study in Cheshmeh Khush Field, Southern Iran

    (ندگان)پدیدآور
    Rastegarnia, MahdiSanati, AliSanati, Alihajiabadi, seyed hasan
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The classification of well-log responses into separate flow units for generating local permeability models is often used to predict the spatial distribution of permeability in heterogeneous reservoirs. The present research can be divided into two parts; first, the nuclear magnetic resonance (NMR) log parameters are employed for developing a relationship between relaxation time and reservoir porosity as well as introducing the concept of relaxation group. This concept is then used for the definition of electrofacies in the studied reservoir. A graph-based clustering method, known as multi resolution graph-based clustering (MRGC), was employed to classify and obtain the optimum number of electrofacies. The results show that the samples with similar NMR relaxation characteristics were classified as similar groups. In the second part of the study, the capabilities of nonlinear support vector machine as an intelligent model is employed to predict the electrofacies and permeability distribution in the entire interval of the reservoir, where the NMR log parameters are . SVM prediction results were compared with laboratory core measurements, and permeability was calculated from stoneley wave analysis to verify the performance of the model. The predicted results are in good agreement with the measured parameters, which proves that SVM is a reliable tool for the identification of electrofacies through the conventional well log data.
    کلید واژگان
    Flow Zone Index
    Electrofacies
    Support Vector Machine
    Nuclear Magnetic Resonance
    Conventional Petrophysical Data

    شماره نشریه
    3
    تاریخ نشر
    2017-10-01
    1396-07-09
    ناشر
    Research Institute of Petroleum Industry (RIPI)
    سازمان پدید آورنده
    Department of Petrophysics, Pars Petro Zagros Engineering & Services Company, Tehran, Iran
    Department of Petroleum Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
    Faculty of Petrochemical and Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran
    Faculty of Petrochemical and Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran

    شاپا
    2251-659X
    2645-3312
    URI
    https://dx.doi.org/10.22078/jpst.2017.804
    https://jpst.ripi.ir/article_804.html
    https://iranjournals.nlai.ir/handle/123456789/205048

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب