• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 10, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 10, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid Artificial Neural Network-Particle Swarm Optimization for Prediction of DNBP Polymerization Retarder Usage in Industrial Styrene Monomer Plant

    (ندگان)پدیدآور
    Gavampour, AliBehroozsarand, Alireza
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The distillation towers of styrene monomer (SM) plants consume a considerable amount of expensive and toxic 2,4-dinitro-6-sec-butyl phenol (DNBP) as a polymerization retarder. The minimization of the operating cost, as well as preventing environmental pollution, is highly desirable to maximize the profit and have a clean technology. How­ever, it is not easy to predict the actual usage of DNBP in the tower because of the nonlinear behavior of the industrial distillation tower in the polymerization process, and also the inaccuracy of experimental results of the DNBP in outlet products. To overcome these difficulties, a prediction model for determining DNBP consumption using a hybrid mod­el in which the ANN in combination with Particle Swarm Optimization (PSO) is proposed in this study. Moreover, all useful parameters (9 parameters) in different years have been gathered from the industrial DCS system for training ANN. After combining PSO with ANN, the main valid parameters have been filtered. From nine proposed settings, five of them have been selected and used for predicting DNBP consumption in the SM plant. The obtained results showed that the proposed ANN-PSO hybrid model is a powerful tool for predicting DNBP usage with an average relative error of 9% between technical and calculated hybrid ANN-PSO model data.
    کلید واژگان
    DNBP
    Artificial Neural Network
    Particle Swarm Optimization
    ANN-PSO hybrid

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Research Institute of Petroleum Industry (RIPI)
    سازمان پدید آورنده
    Chemical Engineering Department, Islamic Azad University, Ilkhchi Branch, Ilkhchi, Iran
    Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran

    شاپا
    2251-659X
    2645-3312
    URI
    https://dx.doi.org/10.22078/jpst.2019.3950.1626
    https://jpst.ripi.ir/article_1037.html
    https://iranjournals.nlai.ir/handle/123456789/204997

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب