نمایش مختصر رکورد

dc.date.accessioned1399-07-09T01:19:40Zfa_IR
dc.date.accessioned2020-09-30T01:19:40Z
dc.date.available1399-07-09T01:19:40Zfa_IR
dc.date.available2020-09-30T01:19:40Z
dc.date.issued2006-06-01en_US
dc.date.issued1385-03-11fa_IR
dc.identifier.citation(2006). On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process. Journal of Sciences, Islamic Republic of Iran, 17(2)en_US
dc.identifier.issn1016-1104
dc.identifier.issn2345-6914
dc.identifier.urihttps://jsciences.ut.ac.ir/article_31732.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/196854
dc.description.abstractWe propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large classes of functions that involve many irregularities of a wide variety of types, including chirp and Doppler functions and jump discontinuities.en_US
dc.format.extent178
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofJournal of Sciences, Islamic Republic of Iranen_US
dc.titleOn the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Processen_US
dc.typeTexten_US
dc.citation.volume17
dc.citation.issue2


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد