• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 9, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 9, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

    (ندگان)پدیدآور
    Ghanbari, SomayehHosseini, RahilMazinani, Mahdi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    636.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hybrid Fuzzy-Evolutionary algorithms to predict the dust phenomenon. For this, first a fuzzy expert system was designed and then it was optimized using evolutionary algorithms like Genetic and Differential Evolutionary algorithms. Evolutionary nature of these algorithms have been taken into account to optimize the fuzzy system in the complex area of the dust phenomenon. To evaluate the proposed hybrid models a real dataset including 55 years of the dust phenomenon in Zanjan province in Iran was considered. Performance of these methods was investigated through an ROC curve analysis in combination with a 10-fold cross validation technique. The accuracy of the fuzzy expert system was 92.13% and after optimization through the Fuzzy-Genetic model and hybrid differential evolutionary model was reached to 93.5% and 97.30%, respectively. The results are promising for early forecasting of the dust phenomena and preventing its consequences.
    کلید واژگان
    Fuzzy expert system
    Differential Evolutionary Algorithm
    genetic algorithm
    ROC Curve Analysis
    Dust Phenomenon Forecasting
    H.3.15.3. Evolutionary Computing and Genetic Algorithms

    شماره نشریه
    1
    تاریخ نشر
    2018-02-01
    1396-11-12
    ناشر
    Sari Branch, Islamic Azad University
    سازمان پدید آورنده
    Department of Artificial Intelligence, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
    Department of Computer Engineering, Shahr-e-Qods Branch, Islamic Azad University,Tehran, Iran
    Department of Electrical Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

    شاپا
    2345-606X
    2345-6078
    URI
    http://jacr.iausari.ac.ir/article_654426.html
    https://iranjournals.nlai.ir/handle/123456789/19324

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب