نمایش مختصر رکورد

dc.contributor.authorAsghari Paeenroodposhti, Foziehen_US
dc.contributor.authorNourian, Saberen_US
dc.contributor.authorYousefnezhad, Muhammaden_US
dc.date.accessioned1399-07-08T17:22:03Zfa_IR
dc.date.accessioned2020-09-29T17:22:03Z
dc.date.available1399-07-08T17:22:03Zfa_IR
dc.date.available2020-09-29T17:22:03Z
dc.date.issued2017-02-01en_US
dc.date.issued1395-11-13fa_IR
dc.date.submitted2016-03-08en_US
dc.date.submitted1394-12-18fa_IR
dc.identifier.citationAsghari Paeenroodposhti, Fozieh, Nourian, Saber, Yousefnezhad, Muhammad. (2017). Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge. Journal of Advances in Computer Research, 8(1), 67-88.en_US
dc.identifier.issn2345-606X
dc.identifier.issn2345-6078
dc.identifier.urihttp://jacr.iausari.ac.ir/article_649618.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/19312
dc.description.abstract<em>The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of learning problems. As a solution, this paper proposes a new methodology of using WOC theory for evaluating and selecting basic result partitions in semi-supervised clustering problems. This paper introduces new technique for reducing the data dimensions based on supervision information, a new semi-supervised clustering algorithm based on k-means for generating basic results, a new strategy for evaluating and selecting basic results based on feedback mechanism, a new metric for evaluating diversity of basic results. The results demonstrate the efficiency of proposed method's aggregate decision-making compared to other algorithms.</em> <em> </em>en_US
dc.format.extent1301
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSari Branch, Islamic Azad Universityen_US
dc.relation.ispartofJournal of Advances in Computer Researchen_US
dc.subjectSemi-Supervised Learningen_US
dc.subjectCluster Ensemble Selectionen_US
dc.subjectWisdom of Crowdsen_US
dc.subjectPairwise Constraintsen_US
dc.subjectConstraint Projectionen_US
dc.titleWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledgeen_US
dc.typeTexten_US
dc.typeOriginal Manuscripten_US
dc.contributor.departmentDepartment of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iranen_US
dc.contributor.departmentDepartment of Electrical Engineering, Sari Branch, Islamic Azad University, Sari, Iranen_US
dc.contributor.departmentCollege of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Chinaen_US
dc.citation.volume8
dc.citation.issue1
dc.citation.spage67
dc.citation.epage88


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد