• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of Sonar Targets Using OMKC, Genetic Algorithms and Statistical Moments

    (ندگان)پدیدآور
    Mosavi, Mohammad RezaKhishe, MohammadEbrahimi, Ehsan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    598.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Due to the complex physical properties of the detected targets using sonar systems, identification and classification of the actual targets is among the most difficult and complex issues of this field. Considering the characteristics of the detected targets and unique capabilities of the intelligent methods in classification of their dataset, these methods seem to be the proper choice for the task. In recent years, neural networks and support vector machines are widely used in this field. Linear methods cannot be applied on sonar datasets because of the existence of higher dimensions in input area, therefore, this paper aims to classify such datasets by a method called Online Multi Kernel Classification (OMKC). This method uses a pool of predetermined kernels in which the selected kernels through a defined algorithm are combined with predetermined weights which are also updated simultaneously using another algorithm. Since the sonar data is associated with higher dimensions and network complexity, this method has presented maximum classification accuracy of 97.05 percent. By reducing the size of input data using genetic algorithm (feature selection) and statistical moments (feature extraction), eliminating the existing redundancy is crucial; so that the classification accuracy of the algorithm is increased on average by 2% and execution time of the algorithm is declined by 0.1014 second at best.
    کلید واژگان
    sonar
    Classification
    OMKC
    genetic algorithm
    Statistical Moments
    Clutter

    شماره نشریه
    1
    تاریخ نشر
    2016-02-01
    1394-11-12
    ناشر
    Sari Branch, Islamic Azad University
    سازمان پدید آورنده
    Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
    Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
    Department of Electrical Engineering, Imam Khomeini University of Maritime Sciences, Nowshahr, Iran

    شاپا
    2345-606X
    2345-6078
    URI
    http://jacr.iausari.ac.ir/article_647056.html
    https://iranjournals.nlai.ir/handle/123456789/19259

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب