نمایش مختصر رکورد

dc.contributor.authorHasanabadi, Hosienen_US
dc.contributor.authorZabihi, Mohsenen_US
dc.contributor.authorMirsharif, Qazalehen_US
dc.date.accessioned1399-07-08T17:21:43Zfa_IR
dc.date.accessioned2020-09-29T17:21:43Z
dc.date.available1399-07-08T17:21:43Zfa_IR
dc.date.available2020-09-29T17:21:43Z
dc.date.issued2014-02-01en_US
dc.date.issued1392-11-12fa_IR
dc.date.submitted2014-03-15en_US
dc.date.submitted1392-12-24fa_IR
dc.identifier.citationHasanabadi, Hosien, Zabihi, Mohsen, Mirsharif, Qazaleh. (2014). Detection of Pulmonary Nodules in CT Images Using Template Matching and Neural Classifier. Journal of Advances in Computer Research, 5(1), 19-28.en_US
dc.identifier.issn2345-606X
dc.identifier.issn2345-6078
dc.identifier.urihttp://jacr.iausari.ac.ir/article_633975.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/19188
dc.description.abstract<em>Computer aided pulmonary nodule detection has been among major research topics lately to help for early treatment of lung cancer which is the most lethal kind of cancer worldwide.Some evidence suggests that periodic screening tests with the CT of patients will help in reducing the mortality rate caused by the lung cancer. Acomplete and accurate computer aided diagnosis (CAD) system for detection of nodules in lung CT images consists of three main steps: extraction of lung parenchyma, candidate nodule detection and false positive reduction. While precise segmentation of lung region speed upthe detection process of pulmonary nodules by limiting the search area, in candidate nodule detection step we attempt to include all nodule like structures. However, the main problem in the current CAD systems for nodule detection is the high false positive rate which is mostly associated to misrecognition of juxta-vascular nodules from blood vessels. In this paper we propose an automated method which has all of the three above mentioned steps. Our method attempts to find initial nodules by thresholding and template matching. To separate false positives from nodules we use feature extraction and neural classifier. The proposed method has been evaluated against several images in LIDC database and the results demonstrateimprovements comparing to previous methods.</em>en_US
dc.format.extent370
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSari Branch, Islamic Azad Universityen_US
dc.relation.ispartofJournal of Advances in Computer Researchen_US
dc.subjectFalse positive reductionen_US
dc.subjectneural classifieren_US
dc.subjectpulmonary nodule detectionen_US
dc.subjectTemplate matchingen_US
dc.titleDetection of Pulmonary Nodules in CT Images Using Template Matching and Neural Classifieren_US
dc.typeTexten_US
dc.contributor.departmentDepartment of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan, Iranen_US
dc.contributor.departmentDepartment of Computer Engineering, Ferdowsi University, Mashhad, Iranen_US
dc.contributor.departmentDepartment of Computer Engineering, Shiraz University, Shiraz, Iranen_US
dc.citation.volume5
dc.citation.issue1
dc.citation.spage19
dc.citation.epage28


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد