شناسایی چهره بااستفاده از تنطیم دقیق شبکه های کانولوشنی عمیق و رویکرد یادگیری انتقالی
(ندگان)پدیدآور
راستگو, راضیهکیانی, کورشنوع مدرک
Textمقاله کامپیوتر
زبان مدرک
فارسیچکیده
یادگیری عمیق، یکی از رویکردهای مورد توجه در یادگیری ماشین می باشد که شامل معماری های مهمی می باشد. شبکه کانولوشنی عمیق، یکی از معماری های مورد توجه در یادگیری عمیق می باشد که در پردازش های مربوط به تصاویر دیجیتالی کاربرد فراوانی پیدا کرده است. در این پژوهش، شبکه کانولوشنی Alexnet، به منظور شناسایی چهره در عکس های ورودی، مورد استفاده قرار گرفته است. تنظیم دقیق مدل از قبل تعلیم داده شده ی Alexnet، با تبدیل لایه های کاملا متصل به لایه های کانولوشنی و اعمال فیلتر های مناسب، انجام شده است. استفاده از برش های مختلف عکس ورودی و نیز افزایش تعداد لایه های کانولوشنی به منظور استخراج خصوصیت های با سطح بالاتر به همراه فیلترهای مناسب در مدل های پیشنهادی مورد توجه قرار گرفته است. به منظور تجسم اعمال فیلترها در لایه های مختلف، از روش کانولوشن معکوس استفاده شده است. از دو پایگاه داده ی Caltech face و LFW به منظور نشان دادن نتایج، استفاده شده است. پس از پردازش های لازم بر روی پایگاه داده های مورد استفاده، نتایح به دست آمده از شبکه Alexnet، قبل و بعد از تنظیم دقیق، مورد بررسی قرار گرفته است. نتایج بررسی، حاکی از بهبود عملکرد شبکه، تحت عملیات انجام شده، می باشد.
کلید واژگان
یادگیری عمیقشبکه کانولوشنی عمیق
تنظیم دقیق
شناسایی چهره
یادگیری انتقالی
کانولوشن معکوس
مهندسی کامپیوتر
شماره نشریه
58تاریخ نشر
2019-09-231398-07-01
ناشر
دانشگاه سمنانسازمان پدید آورنده
دانشجوی دکتری هوش مصنوعی دانشگاه سمناناستادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه سمنان ،




