• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Modern Processes in Manufacturing and Production
    • Volume 6, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Modern Processes in Manufacturing and Production
    • Volume 6, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Optimization of the Effective Parameters of the Die in Parallel Tubular Channel Angular Pressing Process by Using Neural Network and Genetic Algorithm Methods

    (ندگان)پدیدآور
    Armanian, AminKhademi Zadeh, Hassan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    324.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    One of reasons that researchers in recent years have tried to produce ultrafine grained materials is producing lightweight components with high strength and reliability. There are disparate methods for production of ultra-fine grain materials,one of which is severe plastic deformation method. Severe plastic deformation method comprises different processes, one of which is Parallel tubular channel angular pressing. The aim of this study is optimizing parameters of the noticed process die just by utilizing neural network and genetic algorithm methods that at first for this purpose, by using ABAQUS finite element software, the numerical analysis of the die parameters is performed and the impact of each die parameter on the force of the process and the equivalent strain is examined. Finally, for gaining optimal parameters, MATLAB and neural network optimization methods and genetic algorithm are used. The use of neural network and genetic algorithm illustrated that to achieve the ideal possible situation in order to achieve a flawless super-fine tube, it is imperative to use the friction coefficient of 0.05, tube length of 40 mm, channel angle of 140 degrees and diameter increase difference of 1.5 mm. With such values, strain fluctuations reach 0.23, lowest value, and also the force reaches 0.49 KN and the amount of applied strain reaches its highest value to 2.37.
    کلید واژگان
    optimization
    Neural Networks
    Genetic Algorithms
    Severe plastic deformation
    Finite element method

    شماره نشریه
    2
    تاریخ نشر
    2017-05-01
    1396-02-11
    ناشر
    Islamic Azad Univesity, Najafabad Branch
    سازمان پدید آورنده
    M.Sc Student, Department of Mechanical Engineering,Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
    Assistant Professor, Department of of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran

    شاپا
    2717-0314
    2717-0322
    URI
    http://mpmpjournal.iaun.ac.ir/article_596962.html
    https://iranjournals.nlai.ir/handle/123456789/163706

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب