طبقه بندی زعفران با استفاده از ویژگی های رنگی استخراج شده از تصویر
(ندگان)پدیدآور
محمد زاده مقدم, مرتضیتقی زاده, مسعودصدرنیا, حسنپوررضا, حمیدرضانوع مدرک
Textمقاله علمی پژوهشی
زبان مدرک
فارسیچکیده
طبقهبندی زعفران به عنوان گرانترین ادویه از اهمیت بالایی برای مشتریان و تجار برخوردار است. به طور کلی، در حال حاضر دو روش برای درجهبندی زعفران استفاده میشود. روش اول براساس تجربیات فرد خبره و با مشاهده نمونهها انجام میشود. روش دوم تخریبی بوده و با استفاده از متدهای آزمایشگاهی انجام میگیرد. طبق نظر متخصصان، استفاده از تکنیکهای یادگیری ماشین برای طبقهبندی زعفران به دلیل داشتن ماهیت غیر مخرب و خصوصیات بهنگام، یک هدف است. این روش همچنین میتواند باعث افزایش دقت فرآیند درجهبندی در مقیاس صنعتی شود. در این مقاله، یک روش مبتنی بر ماشین بینایی ارائه شده است. با توجه به عدم تحقیقات مستند در مورد این موضوع، جستجوی مشروح جامع در این کار ارائه میشود. تقریباً تمام ویژگیهای رنگ استخراج و در تعداد زیادی از طبقهبندی کنندهها استفاده شد. افراد خبره در ایران زعفران را بر اساس خصوصیات ظاهری به سه طبقه اصلی یعنی پوشال، نگین و سرگل طبقهبندی میکنند. در این مقاله، یک بانک اطلاعاتی متشکل از 440 تصویر از زعفران برای سه کلاس مختلف با استفاده از دوربین تلفن همراه جمعآوری شد. پس از اعمال تعدادی از مراحل پیش پردازش مانند حذف پس زمینه، بریدن و حذف مناطق ناخواسته تصاویر و غیره ، 21 ویژگی رنگی با استفاده از روش های مختلف تحلیل تصویر استخراج شد. برای طبقهبندی از 22 طبقهبندیگر استفاده شدند. مقایسه نتایج طبقهبندی کنندههای مختلف نشان داد که Linear Discriminant ، Linear SVM، Bagged Trees و RUSBoost Trees می توانند در هنگام استفاده از ویژگیهای رنگی، درجهبندی دقیقتری را نسبت به سایر طبقهبندی کنندهها ایجاد کنند. به طور خاص، دراین کار، میانگین دقت 23/82 درصد با استفاده از طبقهبندیکننده خطی SVM بدست آمد.
کلید واژگان
طبقه بندیزعفران
پردازش تصویر
فرآوری، صنایع غذایی و بیوشیمی
شماره نشریه
3تاریخ نشر
2020-09-221399-07-01
ناشر
دانشگاه تربت حیدریهUniversity Of Torbat Heydarieh
سازمان پدید آورنده
دانشجوی دکتری، مهندسی علوم و صنایع غذایی، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهداستادیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
دانشیار، گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد
استاد، گروه کامپیوتر، دانشکده مهندسی، دانشگاه فردوسی مشهد
شاپا
2383-15292383-2142




