• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 16, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 16, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Long Lead Rainfall Prediction Using Statistical Downscaling and Arti cial Neural Network Modeling

    (ندگان)پدیدآور
    Nazif, S.Ashoor, M.Fallahi, M.Rahimi Farahani, M.
    Thumbnail
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Abstract. Long lead rainfall prediction is important in the management and operation of water resources and many models have been developed for this purpose. Each of the developed models has its special strengths and weaknesses that must be considered in real time applications. In this paper, eld and General Circulation Models (GCM) data are used with the Statistical Downscaling Model (SDSM) and the Arti cial Neural Network (ANN) model for long lead rainfall prediction. These models have been used for the prediction of rainfall for 5 months (from December to April) in a study area in the south eastern part of Iran. The SDSM model considers climate change scenarios using the selected climate parameters in rainfall prediction, but the ANN models are driven by observed data and do not consider physical relations between variables. The results show that SDSM outperforms the ANN model.
    کلید واژگان
    Statistical Downscaling Model (SDSM)
    Arti cial Neural Network (ANN)
    Precipitation
    GCM

    شماره نشریه
    2
    تاریخ نشر
    2009-04-01
    1388-01-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Civil Engineering,University of Tehran
    Department of Civil and Environmental Engineering,Amirkabir University of Technology
    Department of Civil Engineering,Amirkabir University of Technology
    Department of Civil Engineering,Amirkabir University of Technology

    شاپا
    1026-3098
    2345-3605
    URI
    http://scientiairanica.sharif.edu/article_3190.html
    https://iranjournals.nlai.ir/handle/123456789/120807

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب