• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on machine learning, data analytics, and advanced optimization techniques in modern power systems [Transactions on Computer Science & Engineering and Electrical Engineering(D)]
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on machine learning, data analytics, and advanced optimization techniques in modern power systems [Transactions on Computer Science & Engineering and Electrical Engineering(D)]
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Risk-based cooperative scheduling of demand response and electric vehicle aggregators

    (ندگان)پدیدآور
    Aliasgahri, ParinazMohammadi-Ivatloo, BehnamAbapour, Mehdi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.975 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper proposes a new cooperative scheduling framework for demand response aggregators (DRAs) and electric vehicle aggregators (EVAs) in a day-ahead market. The proposed model implements the information-gap decision theory (IGDT) to optimize the scheduling problem of the aggregators, which guarantees obtaining the predetermined profit by the aggregators. In the proposed model, the driving pattern of electric vehicle owners and the uncertainty of day-ahead prices are simulated via scenario-based and a bi-level IGDT based methods, respectively. The DR aggregator provides DR from two demand side management programs including time-of-use (TOU) and reward-based DR. Then, the obtained DR is offered into day-ahead markets. Furthermore, the EVA not only meet the EV owners' demand economically, but also participates in the day-ahead mark while willing to set DR contracts with the DR aggregator. The objective function is to maximize the total profit of DR and EV aggregators perusing two different strategies to face with price uncertainty, i.e., risk-seeker strategy and risk-averse strategy. The proposed plan is formulated in a risk-based approach and its validity is evaluated on a case study with realistic data of electricity markets.
    کلید واژگان
    Demand response aggregator
    electric vehicles aggregator
    cooperative framework
    information-gap decision theory
    uncertainty

    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Electrical and Computer Engineering, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
    Department of Electrical and Computer Engineering, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
    Department of Electrical and Computer Engineering, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2019.53685.3446
    http://scientiairanica.sharif.edu/article_21557.html
    https://iranjournals.nlai.ir/handle/123456789/120041

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب