• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on machine learning, data analytics, and advanced optimization techniques in modern power systems [Transactions on Computer Science & Engineering and Electrical Engineering(D)]
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on machine learning, data analytics, and advanced optimization techniques in modern power systems [Transactions on Computer Science & Engineering and Electrical Engineering(D)]
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint distribution adaptation via feature and model matching

    (ندگان)پدیدآور
    Mrdani, MehriTahmoresnezhad, Jafar
    Thumbnail
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    It is usually supposed that the training (source domain) and test (target domain) data follow a similar distribution and feature space in most pattern recognition tasks. However, in many real-world applications, particularly in visual recognition, this hypothesis has been frequently violated. This problem is known as domain shift problem. Domain adaptation and transfer learning are promising techniques to learn an effective and robust classifier to tackle shift problem. In this paper, we propose a novel scheme for domain adaptation, entitled as Joint Distribution Adaptation via Feature and Model Matching (JDAFMM), in which feature transform and model matching are jointly optimized. Due to joint optimization, we can have a robust model with feasible feature transformation and model parameter adaptation. By introducing regularization operated between the marginal and conditional distributions' shifts across domains, we can successfully adapt data drift as much as possible along with empirical risk minimization and rate of consistency maximization between manifold and prediction function. We conduct extensive experiments to evaluate the performance of the proposed model against those of other machine learning and domain adaptation methods in three types of visual benchmark datasets. Our experiments illustrate that our JDAFMM significantly outperforms other baseline and state-of-the-art methods.
    کلید واژگان
    Pattern recognition
    Domain adaptation
    Transfer learning
    Feature transformation
    Model matching
    Speech recognition and pattern recognition

    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Faculty of IT & Computer Engineering, Urmia University of Technology, Urmia, Iran.
    Faculty of IT & Computer Engineering, Urmia University of Technology, Urmia, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2018.5487.1304
    http://scientiairanica.sharif.edu/article_21149.html
    https://iranjournals.nlai.ir/handle/123456789/120037

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب