• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 25, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 25, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of Genetically tuned Fuzzy dynamic model for nonlinear dynamical systems: Application on reaction section of Tennessee Eastman process

    (ندگان)پدیدآور
    eghbal ahmadi, mohammad hoseinRoyaee, Sayed JavidTayyebi, ShokoufeBoozarjomehry, R. B.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    3.292 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This work presents a new GA-Fuzzy method to model dynamic behavior of a process, based on Recurrent Fuzzy modeling through Mamdani approach whose inference system is optimized by Genetic Algorithms. By using the Mamdani approach, the proposed method surmounts the need to solve various types of mathematical equations governing the dynamic behavior of the process. The proposed method consists of two steps; i) constructing a startup version of the model, ii) optimizing the shape of membership functions of the fuzzy sets corresponding to the variables exist in the fuzzy model, along with the production rules constituting the inference such that the obtained fuzzy model can predict the dynamic behavior of the process fairly accurately. The proposed method is used to predict the dynamic behavior of the reaction section of the Tennessee Eastman (TE) benchmark. The overall accuracy of the obtained results compared to their corresponding counterparts in TE benchmark. The mean absolute percentage error (MAPE) of the key process variables which are temperature, pressure, and level of the reactor, and the reactor cooling water outlet temperature were calculated as 1.17%, 0.38%, 1.5%, and 1.57%, respectively, showing high prediction capability of the proposed method.
    کلید واژگان
    Mamdani Fuzzy modeling
    Genetic Algorithm
    Dynamic Modeling
    Tennessee Eastman process
    optimization
    Dynamic modeling

    شماره نشریه
    6
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry (RIPI)-West side of Azadi Complex-Tehran-Iran.
    Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry (RIPI)-West side of Azadi Complex-Tehran-Iran.
    Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry (RIPI), West side of Azadi Complex, Tehran, Iran.
    Dept. of Chemical and Petroleum Eng. Sharif University of Technology Tehran, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2018.5338.1214
    http://scientiairanica.sharif.edu/article_20584.html
    https://iranjournals.nlai.ir/handle/123456789/119981

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب