• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 25, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 25, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting the Collapsibility Potential of Unsaturated Soils Using Adaptive Neural Fuzzy Inference System and Particle Swarm Optimization

    (ندگان)پدیدآور
    Hasheminejad, Mohammad MehdiSohankar, NasrinHajiannia, Alborz
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.976 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Soil collapsibility is one of the important phenomena in unsaturated soil mechanics. This phenomenon can impose extensive financial damages on civil engineering structures due to soil subsidence. Because of uncertainties in effective parameters and their measurements, no precise mathematical relation has been proposed for collapsibility potential evaluation. Therefore, soft computing techniques such as fuzzy logic could be a suitable choice to account for different factors. Adaptive neural fuzzy inference system (ANFIS) was used in this study. To predict the collapsibility potential, hybrid algorithm and particles swarm optimization (PSO) were employed by ANFIS for system training. Gaussian membership functions were utilized for fuzzifying the data. Also, data classification was performed in a subtractive form in the fuzzy inference system. A total of 327 laboratory data was used in particles swarm algorithm, 266 of which were chosen for training and 66 for testing. The obtained results showed the effects of different parameters and the rate of their changes in collapsibility potential. Moreover, comparison of different approaches of system training was done using correlation coefficient. The superiority of the proposed method and the utilized techniques was shown by comparing the results with the ones obtained by other researches.
    کلید واژگان
    Collapse potential
    Soft computing
    Adaptive neural fuzzy inference system
    particle swarm optimization
    Gaussian membership function
    Civil Engineering

    شماره نشریه
    6
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
    Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
    Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2018.20176
    http://scientiairanica.sharif.edu/article_20176.html
    https://iranjournals.nlai.ir/handle/123456789/119877

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب