Implementation of curved wall boundary and absorbing open boundary conditions for the D3Q19 lattice Boltzmann method for simulation of in compressible fluid flows
(ندگان)پدیدآور
Ezzatneshan, Eslamنوع مدرک
TextArticle
زبان مدرک
Englishچکیده
In this work, a three-dimensional lattice Boltzmann method is developed for numerical simulation of the fluid flows around the arbitrary geometries in the wide range of Reynolds numbers. For efficient simulation of high Reynolds number flow structures in the turbulent regime, a large eddy simulation (LES) approach with the Smagorinsky subgrid turbulence model is employed. An absorbing boundary condition based on the concept of sponge layer is improved and implemented to damp the vorticity fluctuations near the open boundaries and regularize the numerical solution by significantly reducing the spurious reflections from the open boundaries. An off-lattice scheme with a polynomial interpolation is used for implementation of curved boundary conditions for the arbitrary geometries. The efficiency and accuracy of the numerical approach presented are examined by computing the low to high Reynolds number flows around the practical geometries, including the flow past a sphere in a range of Reynolds numbers from 102 to 104 and flow around the NACA0012 wing section in two different flow conditions. The present results are in good agreement with the numerical and experimental data reported in the literature. The study demonstrates the present computational technique is robust and efficient for solving flow problems with practical geometries.
کلید واژگان
3-D lattice Boltzmann methodcurved wall boundary condition
absorbing open boundary condition
high Reynolds numbers
arbitrary geometries
Mechanical Engineering
شماره نشریه
4تاریخ نشر
2019-08-011398-05-10
ناشر
Sharif University of Technologyسازمان پدید آورنده
Aerospace Engineering Group, Dept. of New Technologies Engineering, Shahid Beheshti University, Tehran, Iranشاپا
1026-30982345-3605




