• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 22, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 22, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Layout and Size Optimization of Sewer Networks by hybridizing the GHCA Model with Heuristic Algorithms

    (ندگان)پدیدآور
    ROHANI, M.Afshar, M.H.MOEINI, R.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    849.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper, a General Hybrid Cellular Automata (GHCA) model is hybridized with two of the most reliable heuristic search methods, namely Genetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACOA), for the simultaneous optimal design of layout and size of pumped and/or gravity sewer networks. GHCA model is recently proposed by the authors for the optimal size determination of the sewer network with fixed layout. The model has shown to be able to optimally design pumped and/or gravity sewer networks, if required. In proposed hybrid models, the heuristic search algorithms are used to create trial layout for the network while GHCA is used to design the network by determining the pipe diameters, pipe slopes, drop height and pump height, if required. An ad-hoc engineering based method is used to determine feasible layouts by GA, while a Tree Growing Algorithm (TGA) is used to construct feasible layout using ACOA. The proposed hybrid models are tested against two benchmark sewer networks and the comparison of results to those of some existing methods indicates that proposed models, and in particular the ACOA-GHCA method, are more efficient and effective than some alternative methods for the optimal design of layout and size of sewer networks.
    کلید واژگان
    Sewer network
    layout
    ant colony optimization algorithm
    Genetic Algorithm
    Hybrid model
    cellular automata

    شماره نشریه
    6
    تاریخ نشر
    2015-12-01
    1394-09-10
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    School of Civil Engineering, Iran University of Science and Technology, P.O. Box: 16765-163, Narmak, Tehran, Iran
    School of Civil Engineering & Enviro-Hydroinformatic COE, Iran University of Science and Technology, P.O. Box: 16765-163, Narmak, Tehran, Iran
    Department of Civil Engineering, Faculty of Engineering, Isfahan University, Postal Cod: 81746-73441, Isfahan, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    http://scientiairanica.sharif.edu/article_2024.html
    https://iranjournals.nlai.ir/handle/123456789/119430

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب