• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 27, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 27, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault detection in cracked structures under moving load through a recurrent-neural-networks-based approach

    (ندگان)پدیدآور
    JENA, SHAKTIParhi, Dayal
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.464 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The current work is based on the development of an indirect approach in the domain of Recurrent Neural Networks (RNNs) to identify and quantify cracks on a multi-cracked cantilever beam structure subjected to transit mass. At first, the responses of the multi-cracked structure subjected to transit load are determined using fourth order Runge-Kutta numerical method and finite element analysis (FEA) has been executed using ANSYS software to authenticate the employed numerical method. The existences and positions of cracks are identified from the measured dynamic excitation of the structure. The crack severities are found out by FEA as forward problem. The modified Elman's Recurrent Neural Networks (ERNNs) approach has been implemented as inverse problem to predict the locations and severities of cracks in the structure by applying Levenberg-Marquardt (LM) back propagation algorithm. The present analogy has been carried out in a supervised manner to check the convergence of the proposed algorithm. The proposed ERNNs method converge good results with those of theory and FEA.
    کلید واژگان
    Crack location
    crack severities
    Runge-Kutta
    ERNNs
    Levenberg-Marquardt
    Vibration Monitoring

    شماره نشریه
    4
    تاریخ نشر
    2020-08-01
    1399-05-11
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Mechanical Engineering, Vardhaman College of Engineering, Hyderabad, India.
    Department of Mechanical Engineering, National Institute of Technology, Rourkela, India.

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2019.50363.1657
    http://scientiairanica.sharif.edu/article_21258.html
    https://iranjournals.nlai.ir/handle/123456789/119368

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب