• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 23, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 23, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intelligent Choice-Based Network Revenue Management

    (ندگان)پدیدآور
    Etebari, FarhadNajafi, Amir Abbas
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.538 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Choice-based network revenue management concentrates on importing choice models within the traditional revenue management system. Multinomial logit is a popular and well-known model which is base choice model in the revenue management. Empirical results indicate inadequacy of this model for predicting itinerary shares and more realistic models such as nested logit can be proposed for substituting it. Incorporating complex choice models in the optimization module based on statistical tests without considering the complexity of the obtained mathematical model, would lead to increase the complexity of a system without obtaining significant improvement. According to influencing the discrete choice model on the structure of optimization model, it is necessary to analyze the interaction between specific discrete choice and optimization models.In this paper, a knowledge acquisition subsystem is introduced for providing intelligence and considering the most suitable choice models. We develop the feedforward multilayer perceptron artificial neural network for forecasting revenue improvement percent obtained by using more realistic choice models. The obtained results demonstrate new system will decrease the complexity of the system simultaneously with preserving the firm’s revenue. According to the computational results, by increasing the resource restriction, the process of incorporating more realistic choice model will be more important.
    کلید واژگان
    Choice-based network revenue management
    choice model
    optimization module
    interaction
    knowledge acquisition
    artificial neural network

    شماره نشریه
    2
    تاریخ نشر
    2016-04-01
    1395-01-13
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
    Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2016.3860
    http://scientiairanica.sharif.edu/article_3860.html
    https://iranjournals.nlai.ir/handle/123456789/118579

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب