• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 25, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 25, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PREDICTION OF UPLIFT CAPACITY OF SUCTION CAISSON IN CLAY USING FUNCTIONAL NETWORK AND MULTIVARIATE ADAPTIVE REGRESSION SPLINE

    (ندگان)پدیدآور
    Bhattacharya, SumanaMurakonda, PavaniDas, Sarat
    Thumbnail
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Suction caissons are extensively used as anchors for offshore foundation structures. The uplift capacity of suction caisson is an important factor from effective design point of view. In this paper, two recently developed AI techniques, functional network (FN) and multivariate adaptive regression spline (MARS), have been used to predict the uplift capacity of suction caisson in clay.  The performances of the developed models are compared with other AI techniques; artificial neural network, support vector machine, relevance vector machine, genetic programming, extreme learning machine and group method of data handling with harmony search  (GMDH-HS). The model inputs include the aspect ratio of the caisson, undrained shear strength of soil at the depth of the caisson tip, relative depth of the lug at which the caisson force is applied, load inclination angle and load rate parameter. Comparative analyses are made with the results of the above AI techniques, using different statistical performances criteria; correlation coefficient (R), root mean square error, Nash-Sutcliffe coefficient of efficiency, log-normal distribution of ratio of predicted to observed load capacity, with a ranking system to find out the best predictive model. The FN and MARS models are found to be comparably efficient and they outperform other AI techniques.
    کلید واژگان
    suction caisson
    uplift capacity
    functional network
    multivariate adaptive regression spline
    artificial intelligence, statistical performances
    Civil Engineering

    شماره نشریه
    2
    تاریخ نشر
    2018-04-01
    1397-01-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Research Scholar, Civil Engineering Department, National Institute of Technology, Rourkela, India - 769008
    Civil Engineering Department, National Institute of Technology, Rourkela, India - 769008
    Civil Engineering Department, National Institute of Technology, Rourkela, India - 769008

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2017.4192
    http://scientiairanica.sharif.edu/article_4192.html
    https://iranjournals.nlai.ir/handle/123456789/118474

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب