• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 24, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 24, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of artificial neural network and coupled simulated annealing based least square support vector regression models for prediction of compressive strength of high-performance concrete

    (ندگان)پدیدآور
    Ayubi Rad, MostafaAyubirad, Mohammad sadegh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.708 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    High-performance concrete (HPC) is a complex composite material with highly nonlinear mechanical behaviors. Concrete compressive strength, as one of the most essential qualities of concrete, is also a highly nonlinear function of ingredients. In this paper, least square support vector regression (LSSVR) model based on coupled simulated annealing (CSA) has been successfully used to find the nonlinear relationship between the concrete compressive strength and eight input factors (the cement, the blast furnace slags, the fly ashes, the water, the superplasticizer, the coarse aggregates, the fine aggregates, Age of testing). To evaluate the performance of the CSA-LSSVR model, the results of the hybrid model were compared with those obtained by artificial neural network (ANN) model. A comparison study is made using the coefficient of determination R2 and Root Mean Squared Error (RMSE) as evaluation criteria. The accuracy, the computational time, the advantages and shortcomings of these modeling methods are also discussed. The training and testing results have shown that ANNs and CSA-LSSVR models have strong potential for predicting the compressive strength of HPC.
    کلید واژگان
    High Performance Concrete
    compressive strength
    modeling
    coupled simulated annealing
    ANN
    LSSVR

    شماره نشریه
    2
    تاریخ نشر
    2017-04-01
    1396-01-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Tehran university

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2017.2412
    http://scientiairanica.sharif.edu/article_2412.html
    https://iranjournals.nlai.ir/handle/123456789/118443

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب