• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on: Socio-Cognitive Engineering
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Special Issue on: Socio-Cognitive Engineering
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An intelligent system for paper currency verification using support vector machines

    (ندگان)پدیدآور
    Sarfraz, MuhammadSargano, Allah BuxUl Haq, Nuhman
    Thumbnail
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In recent years, with the advent of digital imaging technology such as color printers and color scanners, it has become easier for counterfeiters to produce fake banknotes. The spread of counterfeit money causes loss to everyone involved in financial transactions. Therefore, an effective and reliable   verification technique is necessary for successful and reliable financial transactions. This paper presents a cognitive computation based technique for paper currency verification. In this regard, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) analysis of counterfeit and genuine banknotes are performed. This experimentation confirmed that, material used in preparation of genuine and counterfeit banknotes is totally different from each other. Based on these findings, a set of discriminative and robust features is proposed to reflect these differences in currency images. The proposed features represent the material of the banknote such as printing ink, chemical composition, and surface coarseness of the banknotes. With these robust features, Support Vector Machines (SVMs) is employed for classification. In order to evaluate the performance of proposed technique, experimentations are performed on a self-constructed dataset of Pakistani banknotes, comprised of 195 currency images, including 35 counterfeit banknotes. The results confirm that proposed system achieves 98.57% verification ability on properly captured images.
    کلید واژگان
    currency verification
    surface roughness
    XRD analysis
    texture features
    intelligent system
    support vector machines
    Socio Cognitive Engineering

    تاریخ نشر
    2019-02-01
    1397-11-12
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Information Science, Kuwait University, Adailiya Campus, P.O. Box 5969, Safat 13060, Kuwait
    Department of Computer Science, COMSATS University Islamabad, Lahore Campus, 1.5 KM Defence Road, Off Raiwind Road, Lahore, Pakistan
    Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Tobe Camp, Abbottabad-22060, Pakistan

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2018.21194
    http://scientiairanica.sharif.edu/article_21194.html
    https://iranjournals.nlai.ir/handle/123456789/118238

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب