Weighted composition operators between growth spaces on circular and strictly convex domain
(ندگان)پدیدآور
Rezaei, Shayestehنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the Minkowski functional on $Omega_X$ and $omega :[0,1)rightarrow(0,infty)$ is a nondecreasing, continuous and unbounded function. Boundedness and compactness of weighted composition operators between growth spaces on circular and strictly convex domains were investigated.
کلید واژگان
Weighted composition operatorGrowth space
Circular domain
شماره نشریه
1تاریخ نشر
2015-06-011394-03-11
ناشر
University of Maraghehسازمان پدید آورنده
Department of Pure Mathematics, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran.شاپا
2322-58072423-3900




