• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Mechanics of Advanced Composite Structures
    • Volume 12, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Mechanics of Advanced Composite Structures
    • Volume 12, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tensile, Flexural, and Impact Strength Analysis of a 3D Printed Carbon Fiber Reinforced Nylon Filament

    (ندگان)پدیدآور
    Dhalait, JavedJatti, Vijay KumarTamboli, ShahidMotgi, Rakesh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    829.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    3D printing is one of the most popular methods for prototyping and manufacturing lightweight and complex parts in recent years. The fused filament fabrication (FFF) method is preferred due to its ease of operation. Different plastics can be used as additive materials, such as filaments.  To enhance the mechanical properties of 3D printed products researchers are developing new composite materials. By varying the parameters associated with the manufacturing of these materials, mechanical properties can be altered. This study aimed to find out the effect of printing parameters in Carbon fiber-reinforced Nylon to get better mechanical properties. In this study chopped carbon fibers are reinforced in Nylon base material to get the ‘FFF 3D printing' filament material. Infill density and shell perimeter were varied to get different specimen types. The specimens were prepared as per the ASTM standards for the tensile, flexural, and impact testing.  Machine learning is used to predict the parameters for tensile, flexural, and impact strength. The study shows the effect of printing parameters on mechanical properties like flexural strength and tensile strength. Infill percentage shows a significant effect on mechanical strength. The ML regression model shows higher accuracy for tensile strength than the flexural and impact strength.
    کلید واژگان
    Fused filament fabrication (FFF)
    shell count
    infill density
    Optimization
    machine learning
    Analytical, Computational, and Numerical Mechanics of Composites and Nanocomposites

    شماره نشریه
    3
    تاریخ نشر
    2025-11-01
    1404-08-10
    ناشر
    Semnan University
    سازمان پدید آورنده
    Department of Mechanical Engineering, A. G. Patil Polytechnic Institute, Solapur, Maharashtra, 413008, India
    Department of Mechanical Engineering, Bennett University, Greater Noida, 201310, India
    Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, 412115, India
    Department of Mechanical Engineering, A. G. Patil Polytechnic Institute, Solapur, Maharashtra, 413008, India

    شاپا
    2423-4826
    2423-7043
    URI
    https://dx.doi.org/10.22075/macs.2024.35556.1742
    https://macs.semnan.ac.ir/article_9236.html
    https://iranjournals.nlai.ir/handle/123456789/1166511

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب