• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Mechanics of Advanced Composite Structures
    • Volume 12, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Mechanics of Advanced Composite Structures
    • Volume 12, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lattice Structure Optimization of 3D Printed TPMS under Different Loading Conditions Using Regression Machine Learning

    (ندگان)پدیدآور
    Motgi, RakeshJatti, Vijay KumarTamboli, ShahidDhalait, Javed
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.197 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Modern manufacturing techniques have been significantly transformed by additive manufacturing (AM). Because of its capabilities like customized part manufacturing and, the ability to manufacture intricate and complex parts with reduced waste of material, additive manufacturing is becoming more popular. However, the properties of the parts manufactured by this method significantly vary with the variation in process parameters. Optimizing these parameters helps to extract enhanced mechanical properties. In addition, lattice structures have created new possibilities for increasing strength while lowering part weight through optimized lattice structures. The effect of lattice structure and process parameters on the specimen made using the fused deposition method (FDM) is the major focus of this study. In this work, three distinct TPMS-base (Triply Periodic Minimal Surfaces) lattice architectures are examined for a range of layer height levels. Investigations are conducted using the L9 orthogonal array. The FDM technique uses PLA plastic filament. The Taguchi method was used for optimization, and samples were evaluated on the UTM and Izod impact testing machines. Moreover, an ML model is created by applying machine learning to the collected data. In tensile and impact test data, neural network and Gaussian process regression models showed low error rates and predicted good accuracy. The neural network model for the flexural test data showed a moderate level of accuracy, suggesting potential for improvement. The models' performance was highlighted by their low RMSE, MSE, and MAE values, which show that they can predict material properties. The overall findings indicated that layer height has less impact on tensile and flexural strength than lattice structure. In contrast to the lattice structure, layer height influences the toughness.
    کلید واژگان
    Fused Deposition Modeling
    Lattice structure
    PLA
    Optimization
    Taguchi method
    Analytical, Computational, and Numerical Mechanics of Composites and Nanocomposites

    شماره نشریه
    3
    تاریخ نشر
    2025-11-01
    1404-08-10
    ناشر
    Semnan University
    سازمان پدید آورنده
    Department of Mechanical Engineering, A. G. Patil Polytechnic Institute, Solapur, 413008, Maharashtra. India
    Department of Mechanical Engineering, Bennett University, 201310, Greater Noida India
    Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International University, Pune, 412115, Maharashtra. India
    Department of Mechanical Engineering, A. G. Patil Polytechnic Institute, Solapur, 413008, Maharashtra. India

    شاپا
    2423-4826
    2423-7043
    URI
    https://dx.doi.org/10.22075/macs.2025.35429.1732
    https://macs.semnan.ac.ir/article_9243.html
    https://iranjournals.nlai.ir/handle/123456789/1166510

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب