نمایش مختصر رکورد

dc.contributor.authorHassan Nataj Solhdar, Mohammaden_US
dc.contributor.authorErfani majd, Naseren_US
dc.contributor.authorkeramatzadeh, Alirezaen_US
dc.date.accessioned1404-02-11T07:21:25Zfa_IR
dc.date.accessioned2025-05-01T07:21:25Z
dc.date.available1404-02-11T07:21:25Zfa_IR
dc.date.available2025-05-01T07:21:25Z
dc.date.issued2024-12-01en_US
dc.date.issued1403-09-11fa_IR
dc.date.submitted2024-09-27en_US
dc.date.submitted1403-07-06fa_IR
dc.identifier.citationHassan Nataj Solhdar, Mohammad, Erfani majd, Naser, keramatzadeh, Alireza. (2024). Real-Time Age, Gender, and Emotion Detection Using a Guided Module-Based Convolutional Neural Network for Facial Expression Analysis. Journal of Algorithms and Computation, 56(2), 41-67. doi: 10.22059/jac.2024.382907.1216en_US
dc.identifier.issn2476-2776
dc.identifier.issn2476-2784
dc.identifier.urihttps://dx.doi.org/10.22059/jac.2024.382907.1216
dc.identifier.urihttps://jac.ut.ac.ir/article_100879.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/1160525
dc.description.abstractThis study presents an innovative approach to real-time facial expression analysis using a guided module-based convolutional neural network. The proposed methodology simultaneously detects emotions, age, and gender with high accuracy, achieving 95.1% for seven facial emotions. The research contributes to various fields, including healthcare, security, and human-computer interaction. A custom real-time dataset encompassing diverse age groups was created to enhance the model's efficiency. The study conducted an ablation analysis to optimize the architecture's effectiveness. Quantitative and qualitative results demonstrate superior performance compared to existing methods across multiple datasets. The proposed approach outperforms six state-of-the-art models in accurately detecting emotions based on age and gender in real-time scenarios. This research advances the development of explainable deep-learning models for emotion recognition, addressing challenges posed by specialized datasets and facilitating more sophisticated systems for real-time human interaction analysis.en_US
dc.format.extent1350
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofJournal of Algorithms and Computationen_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/jac.2024.382907.1216
dc.subjectFacial expression analysisen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectEmotion detectionen_US
dc.subjectAge recognitionen_US
dc.subjectGender classificationen_US
dc.subjectGuided module-baseden_US
dc.subjectFusion networken_US
dc.titleReal-Time Age, Gender, and Emotion Detection Using a Guided Module-Based Convolutional Neural Network for Facial Expression Analysisen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentShohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvazen_US
dc.contributor.departmentShohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvazen_US
dc.contributor.departmentShohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvazen_US
dc.citation.volume56
dc.citation.issue2
dc.citation.spage41
dc.citation.epage67
nlai.contributor.orcid0000-0002-8959-3345


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد