نمایش مختصر رکورد

dc.contributor.authorTajeddin, Golnazen_US
dc.contributor.authorAyyoubi Nezhad, Shimaen_US
dc.contributor.authorKhatibi, Toktamen_US
dc.contributor.authorSohrabi, Masoudrezaen_US
dc.date.accessioned1404-02-11T07:21:23Zfa_IR
dc.date.accessioned2025-05-01T07:21:24Z
dc.date.available1404-02-11T07:21:23Zfa_IR
dc.date.available2025-05-01T07:21:24Z
dc.date.issued2024-12-01en_US
dc.date.issued1403-09-11fa_IR
dc.date.submitted2024-11-09en_US
dc.date.submitted1403-08-19fa_IR
dc.identifier.citationTajeddin, Golnaz, Ayyoubi Nezhad, Shima, Khatibi, Toktam, Sohrabi, Masoudreza. (2024). Proposing a novel deep method for detection and localization of anatomical landmarks from the endoscopic video frames. Journal of Algorithms and Computation, 56(2), 24-40. doi: 10.22059/jac.2024.385135.1218en_US
dc.identifier.issn2476-2776
dc.identifier.issn2476-2784
dc.identifier.urihttps://dx.doi.org/10.22059/jac.2024.385135.1218
dc.identifier.urihttps://jac.ut.ac.ir/article_100881.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/1160524
dc.description.abstractEarly detection of gastrointestinal cancer remains a major challenge, particularly in identifying cancerous regions at their initial stages. Anatomical landmarks are crucial for guiding physicians during endoscopic screenings, with accurate localization enhancing diagnostic precision. This study proposes a deep learning approach using convolutional neural networks (CNNs) to detect and localize anatomical landmarks in endoscopic video frames from 40 patients at Firoozgar Hospital, Tehran. Pre-processed frames were annotated with bounding boxes to highlight regions of interest. The CNN model achieved 97.0% accuracy for landmark detection and classification and an MSE of 0.004 for bounding box regression, showing promise for assisting early diagnosis.en_US
dc.format.extent1695
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofJournal of Algorithms and Computationen_US
dc.relation.isversionofhttps://dx.doi.org/10.22059/jac.2024.385135.1218
dc.subjectMachine learningen_US
dc.subjectcomputer visionen_US
dc.subjectObject Detectionen_US
dc.subjectMedical image analysisen_US
dc.subjectSymptoms localizationen_US
dc.titleProposing a novel deep method for detection and localization of anatomical landmarks from the endoscopic video framesen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentSchool of Industrial and Systems Engineering, Tarbiat Modares University (TMU), Tehran, Iranen_US
dc.contributor.departmentSchool of Industrial and Systems Engineering, Tarbiat Modares University (TMU), Tehran, Iranen_US
dc.contributor.departmentSchool of Industrial and Systems Engineering, Tarbiat Modares University (TMU), Tehran, Iranen_US
dc.contributor.departmentGastrointestinal and liver diseases research center, Iran University of Medical Sciences (IUMS), Tehran, Iranen_US
dc.citation.volume56
dc.citation.issue2
dc.citation.spage24
dc.citation.epage40
nlai.contributor.orcid0000-0001-7381-2606
nlai.contributor.orcid0000-0002-5905-4017
nlai.contributor.orcid0000-0002-7609-9516
nlai.contributor.orcid0000-0001-5688-2776


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد