• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 44, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 44, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization and Simulation of Evaluating the Impact of Reactivity Changes in a Typical Pressurized Water Reactor Core with Artificial Neural Networks

    (ندگان)پدیدآور
    Safarpour, OmidJahanfarnia, GholamrezaZarifi, Ehsan
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    678.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Pressurized Water Reactors (PWRs) are integral to the nuclear energy sector, necessitating precise modeling of their dynamic behavior for improved safety and performance. This study introduces a novel approach to simulating PWR dynamics using Artificial Neural Networks (ANNs) optimized by three methods: Levenberg-Marquardt (trainlm), Gradient Descent with Momentum (traingdm), and the metaheuristic Whale Optimization Algorithm (WOA). The ANN model is trained on differential equations characterizing PWR dynamics and is evaluated under various reactivity scenarios to analyze key parameters, including thermal and hydrodynamic parameters. The results demonstrate that the optimization method significantly affects the ANN's performance. WOA outperforms other techniques, achieving the lowest mean squared error (0.0018), highest prediction accuracy (99.1%), and faster convergence for complex reactor scenarios. Furthermore, the innovative integration of WOA provides robust predictions for reactivity-induced variations, emphasizing its superiority in optimizing ANN models for real-time applications. This research uniquely combines reactor physics and chemical engineering principles, offering a comprehensive analysis of how reactivity changes influence dynamic and chemical behavior in PWRs. By bridging these domains, the study highlights the potential of advanced machine learning methods in enhancing reactor safety and efficiency under diverse operational conditions.
    کلید واژگان
    Pressurized Water Reactor
    Artificial neural network
    Machine Learning
    Reactivity
    Whale Optimization Algorithm
    Thermal and hydrodynamic parameters
    Process Design, Simulation, Optimization & Control

    شماره نشریه
    4
    تاریخ نشر
    2025-04-01
    1404-01-12
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
    Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
    Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, I.R. IRAN Tehran, Iran

    شاپا
    1021-9986
    URI
    https://dx.doi.org/10.30492/ijcce.2025.2045104.6886
    https://ijcce.ac.ir/article_720550.html
    https://iranjournals.nlai.ir/handle/123456789/1155503

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب