Weak solutions to quasilinear elliptic obstacle problems
(ندگان)پدیدآور
El Hammar, HasnaeMouad, AllalouEl ouaarabi, MohamedRaji, Abderrahmane
نوع مدرک
TextOriginal Article
زبان مدرک
Englishچکیده
We study a class of obstacle problems in Sobolev spaces of the form\begin{gather*}\begin{cases}\displaystyle\int_{\Omega}\Big(a(\vert D \varpi\vert) D \varpi ):D(\mathcal{U}-\varpi)+ \left\langle \varpi\vert \varpi\vert^{r-2}, \mathcal{U}-\varpi\right\rangle\Big) \mathrm{dy} \geq 0, \\\\\mathcal{U}\in \wp_{\ell,g}. \end{cases}\end{gather*}We prove the existence of a weak solution via Young measure theory and a theorem of Kinderlehrer and Stampacchia. Since our operator does not satisfy the property of monotonicity which is necessary in the proof, we suppose another condition to overcome this situation.
کلید واژگان
Obstacle problemweak solution
Theorem of Kinderlehrer and Stampacchia
Young measures
35 Partial differential equations
شماره نشریه
1تاریخ نشر
2025-01-011403-10-12
ناشر
Department of Pure Mathematics, Ferdowsi University of Mashhad (in cooperation with the Center of Excellence in Analysis on Algebraic Structures and Tusi Mathematical Research Group)سازمان پدید آورنده
Laboratory LMACS, Faculty of Science and Technics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, MoroccoLaboratory LMACS, Faculty of Science and Technics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
Fundamental and Applied Mathematics Laboratory, Faculty of Sciences Aïn Chock, Hassan II University, BP 5366, 20100, Casablanca, Morocco
Laboratory LMACS, Faculty of Science and Technics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco



