On finite-by-nilpotent profinite groups
(ندگان)پدیدآور
Detomi, EloisaMorigi, Martaنوع مدرک
TextProceedings of the conference "Engel conditions in groups" - Bath - UK - 2019
زبان مدرک
Englishچکیده
Let $gamma_n=[x_1,ldots,x_n]$ be the $n$th lower central word. Suppose that $G$ is a profinite group where the conjugacy classes $x^{gamma_n(G)}$ contains less than $2^{aleph_0}$ elements for any $x in G$. We prove that then $gamma_{n+1}(G)$ has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group $G$ is finite-by-nilpotent if and only if there is a positive integer $n$ such that $x^{gamma_n(G)}$ contains less than $2^{aleph_0}$ elements, for any $xin G$.
کلید واژگان
Conjucagy classesverbal subgroups
profinite groups
FC-groups
شماره نشریه
4تاریخ نشر
2020-12-011399-09-11
ناشر
University of Isfahanسازمان پدید آورنده
Dipartimento di Ingegneria dell'Informazione - DEI, Università di Padova,Dipartimento di Matematica, Università di Bologna, Italy.
شاپا
2251-76502251-7669




