Bipartite divisor graph for the set of irreducible character degrees
(ندگان)پدیدآور
Hafezieh, Roghayehنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $G$ be a finite group. We consider the set of the irreducible complex characters of $G$, namely $Irr(G)$, and the related degree set $cd(G)={chi(1) : chiin Irr(G)}$. Let $rho(G)$ be the set of all primes which divide some character degree of $G$. In this paper we introduce the bipartite divisor graph for $cd(G)$ as an undirected bipartite graph with vertex set $rho(G)cup (cd(G)setminus{1})$, such that an element $p$ of $rho(G)$ is adjacent to an element $m$ of $cd(G)setminus{1}$ if and only if $p$ divides $m$. We denote this graph simply by $B(G)$. Then by means of combinatorial properties of this graph, we discuss the structure of the group $G$. In particular, we consider the cases where $B(G)$ is a path or a cycle.
کلید واژگان
bipartite divisor graphirreducible character degree
path
cycle
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
شماره نشریه
4تاریخ نشر
2017-12-011396-09-10
ناشر
University of Isfahanسازمان پدید آورنده
GEBZE TECHNICAL UNIV.شاپا
2251-76502251-7669




