• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Group Theory
    • Volume 3, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Group Theory
    • Volume 3, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    All simple groups with order from 1 million to 5 million are efficient

    (ندگان)پدیدآور
    Campbell, ColinHavas, GeorgeRamsay, ColinRobertson, Edmund
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    429.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    ‎There is much interest in finding short presentations for the finite‎ ‎simple groups‎. ‎Indeed it has been suggested that all these groups are‎ ‎efficient in a technical sense‎. ‎In previous papers we produced nice‎ ‎efficient presentations for all except one of the simple groups with‎ ‎order less than one million‎. ‎Here we show that all simple groups with‎ ‎order between $1$ million and $5$ million are efficient by giving efficient‎ ‎presentations for all of them‎. ‎Apart from some linear groups these‎ ‎results are all new‎. ‎We also show that some covering groups and‎ ‎some larger simple groups are efficient‎. ‎We make substantial use of‎ ‎systems for computational group theory and‎, ‎in particular‎, ‎of computer‎ ‎implementations of coset enumeration to find and verify our presentations‎.
    کلید واژگان
    Efficient presentations
    simple groups
    coset enumeration
    20-04 Explicit machine computation and programs
    20D05 Finite simple groups and their classification
    20D06 Simple groups: alternating groups and groups of Lie type
    20D08 Simple groups: sporadic groups
    20F05 Generators, relations, and presentations

    شماره نشریه
    1
    تاریخ نشر
    2014-03-01
    1392-12-10
    ناشر
    University of Isfahan
    سازمان پدید آورنده
    School of Mathematics and Statistics, University of St Andrews
    Centre for Discrete Mathematics and Computing, School of Information Technology and Electrical Engineering, The University of Queensland
    Centre for Discrete Mathematics and Computing, School of Information Technology and Electrical Engineering, The University of Queensland
    School of Mathematics and Statistics, University of St Andrews

    شاپا
    2251-7650
    2251-7669
    URI
    https://dx.doi.org/10.22108/ijgt.2014.2984
    http://ijgt.ui.ac.ir/article_2984.html
    https://iranjournals.nlai.ir/handle/123456789/109687

    Related items

    Showing items related by title, author, creator and subject.

    • On some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$ 

      Mahmoudifar, A. (Central Tehran Branch, Islamic Azad University, 2017-09-01)
      The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ ...

    • The Higman-Sims sporadic simple group as the automorphism group of resolvable $3$-designs 

      Rahimipour, Ali Reza (University of Isfahan, 2024-06-01)
      Presenting sporadic simple groups as an automorphism groups of designs and graphs is an exciting field in finite group theory.In this paper, with two different methods, we present some new resolvable simple $3$-designs ...

    • A characterization of simple $K_4$-groups of type $L_2(q)$ and their automorphism groups 

      Li, J.؛ Yu, D.؛ Chen, G.؛ Shi, W. (Springer and the Iranian Mathematical Society (IMS), 2017-04-01)
      In this paper, it is proved that all simple $K_4$-groups of type $L_2(q)$ can be characterized by their maximum element orders together with their orders. Furthermore, the automorphism groups of simple $K_4$-groups of type ...

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب