On finite A-perfect abelian groups
(ندگان)پدیدآور
Nasrabadi, Mohammad MehdiGholamian, Aliنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $G$ be a group and $A=Aut(G)$ be the group of automorphisms of $G$. Then the element $[g,alpha]=g^{-1}alpha(g)$ is an autocommutator of $gin G$ and $alphain A$. Also, the autocommutator subgroup of G is defined to be $K(G)=langle[g,alpha]|gin G, alphain Arangle$, which is a characteristic subgroup of $G$ containing the derived subgroup $G'$ of $G$. A group is defined as A-perfect, if it equals its own autocommutator subgroup. The present research is aimed at classifying finite abelian groups which are A-perfect.
کلید واژگان
AutomorphismAutocommutator subgroup
A-perfect group
Finite abelian group
20D25 Special subgroups (Frattini, Fitting, etc.)
20D45 Automorphisms
شماره نشریه
3تاریخ نشر
2012-09-011391-06-11
ناشر
University of Isfahanسازمان پدید آورنده
Department of Maths,birjand universityDepartment of mathematics, Birjand university, Birjand
شاپا
2251-76502251-7669




