On soluble groups whose subnormal subgroups are inert
(ندگان)پدیدآور
Dardano, UldericoRinauro, Silvanaنوع مدرک
TextIschia Group Theory 2014
زبان مدرک
Englishچکیده
A subgroup H of a group G is called inert if, for each $gin G$, the index of $Hcap H^g$ in $H$ is finite. We give a classification of soluble-by-finite groups $G$ in which subnormal subgroups are inert in the cases where $G$ has no nontrivial torsion normal subgroups or $G$ is finitely generated.
کلید واژگان
commensurablestrongly inert
finitely generated
HNN-extension
20E15 Chains and lattices of subgroups, subnormal subgroups
20F22 Other classes of groups defined by subgroup chains
20F24 FC-groups and their generalizations
شماره نشریه
2تاریخ نشر
2015-06-011394-03-11
ناشر
University of Isfahanسازمان پدید آورنده
Dipartimento Matematica e Appl., v. Cintia, M.S.Angelo 5a, I-80126 Napoli (Italy)Dipartimento di Matematica, Informatica ed Economia, Universit a della Basilicata, Viale dell'Ateneo Lucano 10, I-85100
شاپا
2251-76502251-7669




