• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 13, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 13, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advancing Predictive Analytics for Gas Sweetening Plants Through Machine Learning and Feature Selection

    (ندگان)پدیدآور
    Rahaei, Amir hosseinShokri, SaeidAroon, Mohammad AliAbolghasemi, HosseinZarrabi, Saeid
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Predictive models employing random forest regression and support vector machines (SVMs) were developed to predict output parameters in an industrial natural gas sweetening plant. Extensive data comprising 550 input/output variables from a gas processing facility in western Iran was leveraged to construct and evaluate the models. The key output forecast was rich amine loading (mole of acid gas per mole of amine). The dataset was partitioned into training (80%), optimization (10%), and testing (10%) subsets after normalization. An R-squared value of 0.97 and a Mean Absolute Error (MAE) of 0.008 were achieved by the random forest regression, outperforming SVM's R-squared score of 0.91 with an associated MAE of 0.012. Furthermore, the random forest model was optimized using particle swarm optimization (PSO), a metaheuristic technique. The pivotal innovation entails exploiting comprehensive empirical data with hundreds of variables to build data-driven models capable of exceptional predictive fidelity exceeding 0.9 R-squared. This research establishes random forest regression, especially after optimization with PSO, as a highly efficacious and robust methodology for the simulation and optimization of natural gas treating plants
    کلید واژگان
    Petroleum
    Gas Sweetening Plant
    Machine Learning
    Random Forest
    Particle Swarm Optimization

    شماره نشریه
    2
    تاریخ نشر
    2023-05-01
    1402-02-11
    ناشر
    Research Institute of Petroleum Industry (RIPI)
    سازمان پدید آورنده
    Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran
    Digital Transformation Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
    Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran
    School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
    Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Iran

    شاپا
    2251-659X
    2645-3312
    URI
    https://dx.doi.org/10.22078/jpst.2024.5233.1902
    https://jpst.ripi.ir/article_1379.html
    https://iranjournals.nlai.ir/handle/123456789/1089931

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب