• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transp Phenom Nano Micro Scales
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transp Phenom Nano Micro Scales
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

    (ندگان)پدیدآور
    Hosseinian naeini, AliBaghbani Arani, JafarNarooei, AfsanehAghayari, RezaMaddah, Heydar
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    311.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally conductive solids into liquids. In this study, new model to predict nanofluid thermal conductivity based on Artificial Neural Network. A two-layer perceptron feedforward neural network and backpropagation Levenberg-Marquardt (BP-LM) training algorithm were used to predict the thermal conductivity of the nanofluid. To avoid the preprocess of network and investigate the final efficiency of it, 70% data are used for network training, while the remaining 30% data are used for network test and validation. Fe2O3 nanoparticles dispersed in waster/glycol liquid was used as working fluid in experiments. Volume fraction, temperature, nano particles and base fluid thermal conductivities are used as inputs to the network. The results show that ANN modeling is capable of predicting nanofluid thermal conductivity with good precision. The use of nanotechnology to enhance and improve the heat transfer fluid and the cost is exorbitant.It can play a major role in various industries, particularly industries that are involved in that heat.
    کلید واژگان
    Nanofluid
    Neural Network
    thermal conductivity

    شماره نشریه
    2
    تاریخ نشر
    2016-07-01
    1395-04-11
    ناشر
    University of Sistan and Baluchestan, Iranian Society Of Mechanical Engineers
    سازمان پدید آورنده
    Department of Chemical Engineering, Islamic Azad University,Central Tehran Branch, Tehran, I. R. Iran
    Chemical Engineering Department, Kashan University, Kashan, I. R. Iran
    Department of Material Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran
    Daneshestan Institute Of Higher Education, Saveh, Iran
    Department of Chemistry, Sciences Faculty, Arak Branch, Islamic Azad University, Arak, I. R. Iran

    شاپا
    2322-3634
    2588-4298
    URI
    https://dx.doi.org/10.7508/tpnms.2016.02.005
    https://tpnms.usb.ac.ir/article_2531.html
    https://iranjournals.nlai.ir/handle/123456789/107698

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب