| dc.contributor.author | Sheikhhosseini, Alemeh | en_US |
| dc.contributor.author | Aghamollaei, Golamreza | en_US |
| dc.date.accessioned | 1399-07-08T21:11:16Z | fa_IR |
| dc.date.accessioned | 2020-09-29T21:11:16Z | |
| dc.date.available | 1399-07-08T21:11:16Z | fa_IR |
| dc.date.available | 2020-09-29T21:11:16Z | |
| dc.date.issued | 2016-12-01 | en_US |
| dc.date.issued | 1395-09-11 | fa_IR |
| dc.date.submitted | 2016-02-26 | en_US |
| dc.date.submitted | 1394-12-07 | fa_IR |
| dc.identifier.citation | Sheikhhosseini, Alemeh, Aghamollaei, Golamreza. (2016). Cartesian decomposition of matrices and some norm inequalities. Wavelet and Linear Algebra, 3(2), 33-42. doi: 10.22072/wala.2016.23238 | en_US |
| dc.identifier.issn | 2383-1936 | |
| dc.identifier.issn | 2476-3926 | |
| dc.identifier.uri | https://dx.doi.org/10.22072/wala.2016.23238 | |
| dc.identifier.uri | http://wala.vru.ac.ir/article_23238.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/104874 | |
| dc.description.abstract | Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements are studied and investigated for the joint C-numerical radius, joint spectral radius, and for the C-spectral norm of matrices. | en_US |
| dc.format.extent | 470 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Vali-e-Asr university of Rafsanjan | en_US |
| dc.relation.ispartof | Wavelet and Linear Algebra | en_US |
| dc.relation.ispartof | موجک و جبر خطی | fa_IR |
| dc.relation.isversionof | https://dx.doi.org/10.22072/wala.2016.23238 | |
| dc.subject | joint C-numerical radius | en_US |
| dc.subject | C-spectral norm | en_US |
| dc.subject | joint spectral radius | en_US |
| dc.title | Cartesian decomposition of matrices and some norm inequalities | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Department of Pure Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran | en_US |
| dc.contributor.department | Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran | en_US |
| dc.citation.volume | 3 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 33 | |
| dc.citation.epage | 42 | |