نمایش مختصر رکورد

dc.contributor.authorBarkhordari Firozabadi, S.en_US
dc.contributor.authorShahzadeh Fazeli, S.A.en_US
dc.contributor.authorZarepour Ahmadabadi, J.en_US
dc.contributor.authorKarbassi, S.M.en_US
dc.date.accessioned1402-08-26T19:19:39Zfa_IR
dc.date.accessioned2023-11-17T19:19:40Z
dc.date.available1402-08-26T19:19:39Zfa_IR
dc.date.available2023-11-17T19:19:40Z
dc.date.issued2023-12-01en_US
dc.date.issued1402-09-10fa_IR
dc.date.submitted2023-05-11en_US
dc.date.submitted1402-02-21fa_IR
dc.identifier.citationBarkhordari Firozabadi, S., Shahzadeh Fazeli, S.A., Zarepour Ahmadabadi, J., Karbassi, S.M.. (2023). Improving the performance of the FCM algorithm in clustering using the DBSCAN algorithm. Iranian Journal of Numerical Analysis and Optimization, 13(4), 763-774. doi: 10.22067/ijnao.2023.82361.1260en_US
dc.identifier.urihttps://dx.doi.org/10.22067/ijnao.2023.82361.1260
dc.identifier.urihttps://ijnao.um.ac.ir/article_44117.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/1047177
dc.description.abstractThe fuzzy-C-means (FCM) algorithm is one of the most famous fuzzy clus-tering algorithms, but it gets stuck in local optima. In addition, this algo-rithm requires the number of clusters. Also, the density-based spatial of the application with noise (DBSCAN) algorithm, which is a density-based clus-tering algorithm, unlike the FCM algorithm, should not be pre-numbered. If the clusters are specific and depend on the number of clusters, then it can determine the number of clusters. Another advantage of the DBSCAN clus-tering algorithm over FCM is its ability to cluster data of different shapes. In this paper, in order to overcome these limitations, a hybrid approach for clustering is proposed, which uses FCM and DBSCAN algorithms. In this method, the optimal number of clusters and the optimal location for the centers of the clusters are determined based on the changes that take place according to the data set in three phases by predicting the possibility of the problems stated in the FCM algorithm. With this improvement, the values of none of the initial parameters of the FCM algorithm are random, and in the first phase, it has been tried to replace these random values to the optimal in the FCM algorithm, which has a significant effect on the convergence of the algorithm because it helps to reduce iterations. The proposed method has been examined on the Iris flower and compared the results with basic FCM   algorithm and another algorithm. Results shows the better performance of the proposed method.en_US
dc.format.extent303
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.relation.ispartofIranian Journal of Numerical Analysis and Optimizationen_US
dc.relation.isversionofhttps://dx.doi.org/10.22067/ijnao.2023.82361.1260
dc.subjectClusteringen_US
dc.subjectFuzzy clusteringen_US
dc.subjectDBSCANen_US
dc.subjectOptimizationen_US
dc.titleImproving the performance of the FCM algorithm in clustering using the DBSCAN algorithmen_US
dc.typeTexten_US
dc.typeResearch Articleen_US
dc.contributor.departmentPhD candidate, Department of Computer Science, Yazd University , Yazd, Iran.en_US
dc.contributor.departmentParallel Processing Lab, Department of Computer Science, Yazd University, Yazd, Iran.en_US
dc.contributor.departmentDepartment of Computer Science, Yazd University, Yazd, Iran.en_US
dc.contributor.departmentDepartment of Applied Mathematics, Faculty of Mathematical Sciences, Yazd University, Yazd, Iran.en_US
dc.citation.volume13
dc.citation.issue4
dc.citation.spage763
dc.citation.epage774
nlai.contributor.orcid0000-0002-3724-8689


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد