• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 12, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Petroleum Science and Technology
    • Volume 12, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Analysis of Deep Neural Network Model in Recognition of Mud Cuttings Image for Practical Applications

    (ندگان)پدیدآور
    Zhao, ZhimingGao, WenyangChang, JiabiaoChen, YimingZhang, QiushiWang, Bo
    Thumbnail
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Traditional mud logging cuttings identification relies on professionals to carry out visual identification and analysis based on experience. The workload is large and subject to the influence of subjectivity, which is likely to cause errors in information extraction and result analysis. Based on applying deep learning theory in image processing technology, ResNet, DenseNet, and SqeezeNet deep neural network models were built according to the classification of cuttings images. The deep neural network models were used to identify the pictures of cuttings subdivision classification. The evaluation indexes, such as stability, robustness, and recognition effect of different models, were compared and analyzed, and the three models were selected according to the best. The results showed that under the Top-2 standard, the deep neural network model was more accurate in recognizing composite cuttings images. In contrast, the SqeezeNet 1_0 model had the best performance in identifying cuttings after synthesizing different evaluation indicators. The final recognition rate of the optimized SqeezeNet 1_0 model reaches 99.48%. In addition, the obtained SqeezeNet 1_0 network model can effectively identify sandstone, mudstone, and conglomerate cuttings on-site and can be extended to the daily identification of composite cuttings.
    کلید واژگان
    Deep Learning
    deep neural network models
    image recognition
    cuttings images
    mud logging

    شماره نشریه
    4
    تاریخ نشر
    2022-10-01
    1401-07-09
    ناشر
    Research Institute of Petroleum Industry (RIPI)
    سازمان پدید آورنده
    Department of Petroleum Engineering, Panjin Vocational and Technical College, Panjin, Liaoning, China
    Department of Petroleum Engineering, Panjin Vocational and Technical College, Panjin, Liaoning, China
    CCDC Changqing General Drilling Company, Xi’an, Shaanxi, China
    Department of Oil and Gas Engineering, Liaoning Petrochemical University, Fushun, Liaoning, China\ Faculty of Engineering and Applied Science, University of Regina, Regina, Canada
    Department of Oil and Gas Engineering, Liaoning Petrochemical University, Fushun, Liaoning, China
    Faculty of Engineering and Applied Science, University of Regina, Regina, Canada

    شاپا
    2251-659X
    2645-3312
    URI
    https://dx.doi.org/10.22078/jpst.2023.4852.1812
    https://jpst.ripi.ir/article_1326.html
    https://iranjournals.nlai.ir/handle/123456789/1040772

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب